
Guy Smith-Ferrier

.NET
Internationalization
The Developer's Guide to Building Global
Windows and Web Applications

S
m

ith-Ferrier

Development
Series

“This series is a great resource
for developers using the .NET
Framework and Web services.
It covers all the bases from refer-
ence to ‘how-to.’ The books in this
series are essential reading for
developers who want to write
solid managed code.”

—John Montgomery
Director, Developer Platform and

Evangelism Division, Microsoft Corporation

“This series is supported by the
leaders and principal authorities
of the Microsoft .NET Framework
and its languages. It has an
author pool that combines some
of the most insightful authors in
the industry with the software
architects and developers
at Microsoft.”

—Don Box
Architect, Microsoft Corporation

“This book is an invaluable read for anyone who wants to learn the hows, whys, and pitfalls of
mobile programming and to truly understand why they’re doing what they’re doing.”

—Joshua Trupin, Executive Editor, MSDN Magazine

FREE CHAPTER

BOOK AVA I LABLE

JANUARY 2006

This manuscript has been provided by Pearson Education at this
early stage to create awareness for this upcoming book. It has not
been copyedited or proofread yet; we trust that you will judge this
book on technical merit, not on grammatical and punctuation errors

that will be fixed at a later stage.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic,

mechanical, photocopying, recording, or otherwise, without the prior
consent of the publisher.

All Pearson Education books are available at a discount for corporate
bulk purchases. For information on bulk discounts, please call (800)

428-5531.

DRAFT MANUSCRIPT

Books Available

January 2006

.NET Internationalization Book Chapter Summaries

This document provides an outline of the chapters in “.NET Internationalization” by
Guy Smith-Ferrier.

Preface - How To Read This Book

 What this book covers
 Who should read this book
 What you need to use this book
 Source Code
 Acknowledgements

Chapter 1 - A Roadmap For The Internationalization Process

 The Operating System
 The .NET Framework And Visual Studio
 Languages
 Resource Formats
 Languages And Cultural Formatting
 Windows Forms Applications
 ASP.NET Applications
 Globalization
 Localization
 Machine Translation
 Resource Administration
 Testing
 Translation

Chapter 2 – Unicode, Windows And The .NET Framework

 Unicode
 Code Pages
 Unicode Windows
 Code Page Windows
 Virtual Machines
 Windows Multiple User Interface Pack
 Language and Locale Support
 .NET Framework languages and .NET Framework Language Packs

Chapter 3 - An Introduction To Internationalization

 Internationalization Terminology
 World-Readiness
 Localization
 Customization
 Internationalization Terminology Confusion
 Cultures
 Localizable Strings
 Resource File Formats
 Resource Managers
 Localized Strings
 CurrentCulture And CurrentUICulture
 CurrentCulture, CurrentUICulture And Threads
 The Resource Fallback Process
 NeutralResourcesLanguageAttribute And
UltimateResourceFallbackLocation
 Image Resources
 Adding Image Resources In Visual Studio 2003
 Strongly-Typed Resources In The .NET Framework 2.0
 ResGen
 StronglyTypedResourceBuilder
 Strongly-Typed Resources In The .NET Framework 1.1

Chapter 4 - Windows Forms Specifics

 Localizing Forms
 Property Assignment Model
 Property Reflection Model
 Localizing A Form
 Adding And Deleting Components
 Setting The CurrentUICulture
 Changing The Culture During Execution
 Using Regional and Language Options To Change The Culture
 Dialogs
 Windows Resource Localization Editor (WinRes)
 Resource File Mode
 WinRes 2.0 And Cultures
 WinRes 1.1 And Visual Studio 2003 Compatibility
 WinRes And Visual Form Inheritance
 WinRes Pros and Cons
 ClickOnce
 A Brief Introduction To ClickOnce
 Deploying A Single Culture Using Visual Studio 2005
 The ClickOnce User Interface

 Deploying A Single Culture Using msbuild
 Deploying All Cultures Using Visual Studio 2005
 Deploying All Cultures Using msbuild
 Deploying All Cultures Individually Using Visual Studio 2005
 Deploying All Cultures Individually Using msbuild
 .NET Framework Language Packs And ClickOnce Prerequisites
 Thread.CurrentThread.CurrentCulture And ClickOnce Security

Chapter 5 - ASP.NET Specifics

 Localizability In .NET 1.1
 Automating Resource Assignment
 Static Text
 Calendar Control
 Setting And Recognizing The Culture
 Setting The Culture In Internet Explorer
 Recognising The User Culture
 Setting The Culture In Configuration Files
 Caching Output By Culture
 Localizability In Visual Studio 2005
 How It Works
 Resx Files, Application Domains And Session State
 Automatic Culture Recognition For Individual Pages
 How It Works
 Manual Culture Recognition For Individual Pages
 Application-Wide Automatic Culture Recognition
 Session/Profile vs. Page Level Attributes
 Explicit Expressions
 Global Resources
 Programmatic Resource Access
 Localizing ASP.NET 2 Components
 Login Controls
 SiteMap Control
 Localizing The Website Administration Tool

Chapter 6 – Globalization

 The CultureInfo Class
 CultureInfo.GetCultures And CultureTypes Enumeration
 The Relationship Between CultureInfo And Other Globalization Classes
 The RegionInfo Class
 String Comparisons
 Casing
 Sort Orders

 Alternative Sort Orders
 Calendars
 Calendar Eras
 Calendar.TwoDigitYearMax
 DateTimes, DateTimeFormatInfos And Calendars
 DateTime.ToString, DateTime Parsing And DateTimeFormatInfo
 Genitive Date Support
 DateTime.ToString And IFormatProvider
 Numbers, Currencies And NumberFormatInfo
 International Domain Name Mapping
 International Domain Names And Visual Spoofing
 Environment Considerations
 Extending The CultureInfo Class

Chapter 7 - Middle East and East Asian Cultures

 Supplemental Language Support
 Right To Left Languages And Mirroring
 Detecting A Right To Left Culture
 Right To Left Languages And Mirroring In Windows Forms Applications
 Mirroring In The .NET Framework 1.1
 Setting RightToLeft Across The Application
 MessageBox
 Right To Left Languages And Mirroring In ASP.NET Applications
 Setting The dir Attribute In The HTML or BODY Element
 Setting The dir Attribute Using An Explicit Expression
 Setting Right To Left Encoding In Internet Explorer
 Setting The dir Attribute Across The Application
 Mirroring And Absolute Positioning
 Right To Left Cultures And Images
 Input Method Editors
 Installing An IME
 How To Use An IME
 Using An IME In A Windows Forms Application
 Control.ImeMode And The ImeMode Enumeration

Chapter 8 - Best Practices

 Fonts Selection
 Font Terminology And The Font Class
 Font Properties Extension
 Getting Font Information Programmatically
 Windows Forms Controls
 ASP.NET Controls

 The SystemFonts Class
 Font Substitution
 MS Shell Dlg and MS Shell Dlg 2
 Font Linking
 Font Fallback
 Font Names Are Sometimes Translated
 Font Strategy
 Text Strings And String.Format
 Text Ending With Colons
 Embedded Control Characters
 Exception Messages
 HotKeys
 ASP.NET And HotKeys
 Windows Forms Best Practices
 Form Layout
 AutoSize
 AutoSizeMode
 AutoEllipsis
 TableLayoutPanel And FlowLayoutPanel

Chapter 9 - Machine Translation

 How good is it ?
 Translation Engine
 The ITranslator Interface
 The Translator Class
 The TranslatorCollection Class
 Pseudo Translation
 Choosing A Culture For Pseudo Translation
 The PseudoTranslator Class
 Static Lookup Translator
 Web Service Translators
 HTML Translators
 Visual Studio 2003 WebBrowser Control
 The AltaVistaTranslator Class
 Office 2003 Research Services
 WorldLingo Translation Services
 Translator Evaluator

Chapter 10 – Resource Administration

 Resource Administrator
 Keeping Sets Of Resources In Synch
 Automatic Translation Of Strings

 Resource Administrator Is Not Limited To Maintaining resx Files
 Exporting Resources
 Integrity Check
 Add Resource String Visual Studio Add-In
 Installing The Add-In In Visual Studio 2005
 Installing The Add-In In Visual Studio 2003
 Reading And Writing Resources
 Reading Resources
 Writing Resources
 ResXDataNodes And Comments
 ResX File References
 Resource Governors
 Data Nodes, Comments And File References
 The Resource Editor Control

Chapter 11 - Custom Cultures

 Uses For Custom Cultures
 Using CultureAndRegionInfoBuilder
 Installing/Registering Custom Cultures
 Uninstalling/Un-Registering Custom Cultures
 Public Custom Cultures And Naming Conventions
 Support For Custom Cultures
 Supplementary Replacement Custom Cultures
 Custom Culture Locale IDs
 Custom Culture Parents And Children
 Supplementary Custom Cultures
 Bengali (Bangladesh)
 Pseudo Translation Custom Culture
 CultureSample And CultureBuilderSample
 Combining Cultures
 Exporting Operating System-Specific Cultures
 Company-Specific Dialects
 Extending The CultureAndRegionInfoBuilder Class
 Custom Cultures And .NET Framework Language Packs
 Custom Cultures In The .NET Framework 1.1 And Visual Studio 2003

Chapter 12 - Custom Resource Managers

 ResourceManager.CreateFileBasedResourceManager
 Incorporating resgen Into The Build Process In Visual Studio 2005
 Incorporating resgen Into The Build Process In Visual Studio 2003
 ResourceManager.CreateFileBasedResourceManager In Practice
 ResourceManager Exposed

 ResourceManager.GetString
 ResourceManager.GetString Example
 ResourceManager Constructors
 ResourceManager.InternalGetResourceSet
 Assembly Based Resource Managers
 File Based Resource Managers
 ComponentResourceManager Exposed
 Custom Resource Managers Examples
 DbResourceManager
 ResourcesResourceManager And ResXResourceManager
 Writable Resource Managers
 DbResourceWriter
 Writable ResourcesResourceManager
 TranslationResourceManager
 StandardPropertiesResourceManager
 ResourceManagerProvider
 Using Custom Resource Managers in Windows Forms
 Generating Strongly Typed Resources For Sources Other Than resx Files
 Generating Strongly Typed Resources Which Use
ResourceManagerProvider
 Using Custom Resource Managers In ASP.NET 2.0
 The Resource Provider Model
 Setting The Resource Provider Factory
 ResourceManagerResourceProviderFactory
 DbResourceManagerResourceProviderFactory

Chapter 13 - Testing Internationalization Using FxCop

 A Brief Introduction To FxCop
 Enabling FxCop in Visual Studio 2005 Team Test
 FxCop And ASP.NET
 FxCop Globalization Rules
 Overview Of New FxCop Globalization Rules
 Control characters embedded in resource string
 Form.Language must be (Default)
 Form.Localizable must be true
 Label.AutoSize must be true
 DateTime.ToString() should not use a culture specific format
 Dialog culture dictated by operating system
 Dialog culture dictated by .NET Framework
 Do not pass literals to exception constructors
 Do not use literal strings
 ResourceManager not provided by provider
 Resource string missing from fallback assembly
 Resource language missing

 Resource string missing from satellite assembly
 Controls should not define duplicate accelerators (Enhanced)
 Writing FxCop Globalization Rules
 Resource Rules
 Type/Resource Rules
 Satellite Resource Rules
 Instruction Rules

Chapter 14 – The Translator

 The Translation Process
 Translator or Localizer ?
 Translation/Localization Strategies
 ASP.NET 2.0 Translation/Localization Strategies
 Windows Forms And ASP.NET 1.1 Translation/Localization Strategies
 ResXResourceManager
 Linked Satellite Resource Assemblies
 Building A Linked Satellite Resource Assembly Using

The .NET Framework SDK
 Building A Linked Satellite Resource Assembly Using

.NET Framework Classes
 Rebuilding Satellite Resource Assemblies
 Rebuilding Satellite Resource Assemblies From Original

Assemblies
 Rebuilding Satellite Resource Assemblies From Original

Assemblies Without Resx Files
 Signed Assemblies
 WinRes Translation/Localization Strategies
 Invoking WinRes From Within An Application
 Using WinRes With Formats Other Than resx and resources
 WinRes 1.1 And Single File Mode
 Resource Translation Manager
 Reintegrating Resources

Appendix A - New Internationalization Features In The .NET
Framework 2.0 And Visual Studio 2005

 Compatibility
 Windows Forms Compatibility
 CultureInfo.GetCultures Order
 Control.DefaultFont Logic
 CultureInfo.Equals Logic
 CultureInfo.OptionalCalendars Has New Calendars

 Month And Day Names Have Changed For Some Cultures
 ResX File References Break Code Which Uses ResXResourceReader
 ResX Changes Break Code Which Uses ResXResourceReader
 .NET Framework Redistributable
 .NET Framework Language Packs
 .NET Framework
 New IdnMapping Class
 CultureInfo.GetCultures and CultureTypes Enumeration
 New CultureInfo Methods
 String.Compare and StringComparison Enumeration
 New DateTime Properties
 New DateTime Methods
 New Calendars
 New Calendar Properties
 New Calendar Methods
 New RegionInfo Properties
 New TextInfo Properties
 New TextInfo Methods
 New NumberFormatInfo Properties
 New ResourceReader Methods
 New ResXResourceReader Properties
 New ResXResourceReader Methods
 New ResXResourceWriter Methods
 New String Methods
 New CharUnicodeInfo Class
 resx Files And File References
 New ResourceManager Methods
 Customizing The Fallback Process
 ResView and ResExtract
 Strongly Typed Resources
 Custom Cultures
 Visual Studio’s Resource Editor
 Windows Forms
 Property Reflection Model
 Label.AutoSize Default
 Control.AutoSize
 AutoSizeMode Property
 AutoEllipsis Property
 RightToLeftLayout Property
 TableLayoutPanel And FlowLayoutPanel Controls
 BackgroundWorker
 WinRes
 ASP.NET
 Localizability
 Web.config <globalization> culture And uiCulture Attributes
 New Page Culture And UICulture Attributes
 New Page.InitializeCulture Method

 Web Control Properties Are Marked As Localizable
 New Localize Control
 Automatic resx File Change Detection

Appendix B - Information Resources

 Books
 Resources Resources
 Magazines
 Websites And FTP Sites
 Online Machine Translation Websites
 Blogs
 Conferences
 Organizations
 Commercial Machine Translation Products
 Alternatives To .NET Framework Internationalization

Preface
It is often said that the world is getting smaller every day. Cheap, fast

air travel, the global economy, the global climate, the insatiable desire
for standards and, perhaps, most important of all, the Internet all play a
part in the homogenization of our world. It is ironic therefore that far
from this shrinking effect being a benefit to developers it has, in fact, the
opposite effect. As the world community achieves greater awareness and
greater tolerance the demand for culturally-aware software increases.
Within the US and Canada, for example, significant Hispanic, French
and Chinese populations exist. At best English-only Windows
applications and websites are difficult for these cultures. At worst these
populations are excluded and/or offended and such websites are
potentially illegal (Quebec and France, for example, both have laws
prohibiting the hosting of English-only websites and many countries
(Wales, for example) require that public services are always available in
their native language in addition to English). From the marketing and
financial viewpoints English-only applications and particularly websites
represent a massive lost market. Websites are, by their very nature,
global but where an English-only website may reach billions of people
such opportunities are lost if those people do not speak English. From a
marketing point of view such a lost opportunity is a criminal waste.

The news is good, however. The .NET Framework has arguably the
most comprehensive support for internationalizing .NET applications of
any development platform. The .NET Framework provides a significant
infrastructure for globalizing applications and Visual Studio 2003 and
2005 provide excellent functionality for localizing Windows
applications. Although Visual Studio 2003 offered little help for
ASP.NET developers, rest assured that Visual Studio 2005’s support for
localizing web applications is thorough.

What this book covers
This book covers the internationalization of .NET Windows Forms

and ASP.NET applications. It covers both v1.1 and v2.0 of the .NET
Framework and both Visual Studio 2003 and Visual Studio 2005.
Although the main focus of the book is on the .NET Framework 2.0 and

Visual Studio 2005 differences between them and the .NET Framework
1.1 and Visual Studio 2003 are highlighted. Although Visual Studio
2003 developers can read this book by skipping the sections on Visual
Studio 2005 I would advise against this; Visual Studio 2005 offers many
useful new facilities – many of which can be retrofitted to Visual Studio
2003 and knowledge of others provide guidance on how to design Visual
Studio 2003 applications with a clear migration path to Visual Studio
2005. For a list of the new Internationalization features in .NET
Framework 2.0 and Visual Studio 2005 see Appendix A, New
Internationalization Features In The .NET Framework 2.0 And Visual
Studio 2005.

Chapter 1, A Roadmap For The Internationalization Process provides
a general overview of what is involved in internationalizing an
application and includes more specific information on why some of the
more advanced chapters will be of more interest to you and what
solutions can be found in them. Chapter 2, Unicode, Windows And The
.NET Framework lays down the foundation of what Unicode is and what
you can expect from the operating system and the .NET Framework. The
essential mechanics of internationalization are covered Chapter 3, An
Introduction To Internationalization and this should be considered a pre-
requisite for all other chapters. From here Windows Forms developers
should read Chapter 4, Windows Forms Specifics and ASP.NET
developers should read Chapter 5, ASP.NET Specifics. Chapter 6,
Globalization covers the concept of globalization in depth, the .NET
Framework globalization classes and some solutions for globalization
issues which are not covered by the .NET Framework classes. Chapter 7,
Middle East And East Asian Cultures covers issues which are specific to
right-to-left cultures (Arabic, Divehi, Farsi, Hebrew, Syriac and Urdu)
and Asian cultures (Chinese, Korean, Japanese). Chapter 8, Best
Practices provides internationalization guidance on a more general level
including issues such as the choice of fonts. Chapter 9, Machine
Translation provides solutions for automatically translating your
resources into other languages. Chapter 10, Resource Administration
describes a number of utilities included in the source code for this book
to help with the administration of resources. As applications grow
beyond the simplistic examples used to illustrate concepts the
maintenance and management of applications’ resources demands more
dedicated solutions. Chapter 11, Custom Cultures describes how to
create your own cultures and integrate them into the .NET Framework
2.0 and Visual Studio 2005. Custom cultures are useful for creating

pseudo translations, supporting unsupported cultures, creating
commercial dialects and supporting languages outside of their normal
country (e.g. Spanish in the US, Chinese in Canada, Urdu in the United
Kingdom). Chapter 12, Custom Resource Managers describes how the
existing resource managers work internally and how to write new
resource managers and use them in Windows Forms applications and
ASP.NET applications. Custom resource managers are the solution to
numerous developers issues from changing the origin of resources (to,
say, a database) to changing the functionality of resource managers (to,
say, standardize specific properties throughout an application). Chapter
13, Testing Internationalization Using FxCop shows how to use FxCop
to apply internationalization rules to your assemblies. It covers the
existing FxCop Globalization rules, introduces new globalization rules
based on the issues raised throughout this book and shows how to write
these rules to enable you to write your own rules. Chapter 14, The
Translator discusses the issues and solutions involved in including the
translator in the internationalization process. As noted already Appendix
A includes a list of the new features in the .NET Framework 2.0 and
Visual Studio 2005. Most of these features are covered throughout the
book so this appendix is mostly a list of pointers to chapters within the
book. Appendix B, Information Resources is a list of books, resources,
websites, magazines, online machine translation websites, blogs,
conferences, organizations and commercial machine translations
products which will raise your awareness of the internationalization
community.

Who should read this book
This book is aimed at developers, team leaders, technical architects –

essentially anyone who is involved in the technical aspects of
internationalizing .NET applications. The book uses C# examples but the
content is equally relevant to Visual Basic.NET developers and anyone
who uses Visual Studio. The book expects that Visual Studio will be the
main development environment but many chapters focus solely on the
.NET Framework and as such the information contained within has equal
value if you use an alternative development environment such as
SharpDevelop or Borland Delphi 2005.

What you need to use this book
To get the most from this book you will need the .NET Framework

2.0 and Visual Studio 2005. Alternatively, you can still follow a large
part of this book using the .NET Framework 1.1 and Visual Studio 2003.
You can follow a lesser part of this book using the .NET Framework 1.1
or 2.0 and an alternative development environment.

Source Code
The complete source code for this book is available for download at

http://www.dotneti18n.com together with errata, updates to the code,
new code examples and additional information.

Acknowledgements
I would like to thank Jesper Holmberg, Ken Cox, Mark Blomsma,

Douglas Reilly and Jason Nadal for their excellent help in reviewing this
book; the better three quarters of 4 Chaps From Blighty (Brian Long,
Steve Scott and especially Steve Tudor,
http://www.4chapsfromblighty.com) for their excellent technical
expertise and their readiness to help a friend in need; everyone who
worked on this book at Addison-Wesley but notably Joan Murray and
Jessica D’Amico for their dedication to the cause; many people at
Microsoft especially “Dr. International” for their specific help and their
general contribution to the internationalization world; Roy Nelson for his
problem solving skills; and Yae Nobuto for her linguistic skills. Special
thanks to my brother, Paul, for too many reasons to list.

Finally, for the avoidance of doubt, the fictional character Frodo
Potter does not appear anywhere in this book.

Chapter 11
Custom Cultures

The CultureInfo class is at the heart of .NET’s internationalization
solution. In Chapter 6, Globalization we saw that in the .NET Framework
2.0 the list of available cultures is a combination of those cultures known
to the .NET Framework plus those known to the operating system and in
the .NET Framework 1.1 the list of available cultures is simply those
known only to the .NET Framework. These cultures are fine if the
country/language combination that you need is one of the available
cultures and the information for that combination is correct for your
application. But there are many country/language combinations which
are not available and some of those which are available may not have the
correct information for your application. For this reason Custom Cultures
were introduced in the .NET Framework 2.0. A custom culture is a
culture that is defined by an application developer. Once created it is
treated by the .NET Framework as a first class citizen and is just as valid
as any other culture. In this chapter we look at how to create custom
cultures and how to register/un-register and deploy custom cultures. The
story for .NET Framework 1.1 applications is not so sophisticated. It is
possible to create custom cultures in the .NET Framework 1.1 but the
results are less than satisfactory. This subject is covered at the end of this
chapter.

Uses For Custom Cultures
There are many possible uses for custom cultures and it is entirely

possible that free and commercial custom cultures will be downloadable
from the Internet. In this section we will look at a number of reasons why
you might want to create your own.

The first and simplest reason has already been covered in the “The
CultureInfo Class” section of Chapter 6, Globalization. In this section it
was noted that some information in existing cultures becomes incorrect

over a period of time. A common example is that the currency used in a
given country changes. For example, France changed from French
Francs to the Euro, Turkey changed from TL (Türk Lirasi) to YTL (Yeni
Türk Lirasi) and other changes (e.g. England changing from pounds
sterling to the Euro) are entirely possible in the future. The user can, of
course, make these changes themselves and an application can adopt the
user’s changes by passing true for the useUserOverride parameter of the
CultureInfo constructor but this moves the problem from the developer to
the user and the user is probably not the best owner of this problem. In
Chapter 6 one solution to this problem was to use a CultureInfoProvider
class. This is a simple solution and works with both versions of the .NET
Framework but it requires all code which creates CultureInfo objects to
use the CultureInfoProvider class instead. If you don’t have access to all
of the code which executes then this solution will not work. Custom
cultures allow you to create a “replacement” culture which has the same
name and LCID as an existing culture but which has different property
values. The first custom culture which we will create is just such a
culture.

Another common reason to use a custom culture is to support a
known language outside of its known country of use. For example,
Spanish is widely used in the United States but the .NET Framework
does not have an es-US (Spanish (United States)) culture. Table 11.1
shows a number of examples of these cultures.
Culture Name Culture EnglishName Approx. Number Of Users Of

This Language In This Region

es-US Spanish (USA) 22,400,000

hi-GB Hindi (United Kingdom) 1,300,000

pa-CA Punjabi (Canada) 300,000

zh-CA Chinese (Canada) 870,000

zh-US Chinese (USA) 2,000,000

Table 11.1 Examples Of Custom Cultures For Languages Outside
Of Their Known Countries

It would be unfeasible for Microsoft to support the complete list of
possible combinations of countries and languages considering that there
are nearly 200 countries in the world and nearly 7000 languages. We can
create “supplementary” custom cultures for these “missing”
country/language combinations. The Spanish (United States) custom
culture in this chapter is just such a culture. This scenario applies equally
to the various ex-patriot communities around the world. There is a

sizable population of British ex-patriots, for example, in France and
Spain generating a demand for English (France) and English (Spain)
custom cultures.

A variation of this theme is to create a custom culture for which
either the country and/or the language is not one which is currently
supported by the .NET Framework (or Windows). Table 11.2 shows
some examples.
Culture Name Culture EnglishName Approx. Number Of Users

Of This Language In This
Region

bn-BD Bengali (Bangladesh) 125,000,000

eo Esperanto 2,000,000

fj-FJ Fijian (Fiji) 364,000

gd-GB Gaelic (United Kingdom) 88,892

tlh-KX Klingonese (Klingon)
(“tlh” is the ISO code assigned to
“tlhIngan Hol”, the name for the
Klingon language)

431,892,000,000

la Latin ?

tl-PH Tagalog (Philippines) 14,000,000

Table 11.2 Examples Of Custom Cultures For Unsupported
Countries And/Or Languages

Another equally important use for custom cultures is to support
pseudo translations. In the “Choosing A Culture For Pseudo Translation”
section of Chapter 9, Machine Translation I introduced a
PseudoTranslator class which performs a pseudo translation from a Latin
based language to an accented version of the same language. The benefit
is that the localization process can be tested and the localized application
can still be used by developers and testers without having to learn
another language. In the implementation in Chapter 9 an existing culture
was hijacked to serve as the pseudo translation culture. In this chapter we
will create a custom culture which exists exclusively to support a pseudo
translation.

Finally another common use for custom cultures is to support
commercial dialects. In this scenario you want to ship an application in a
single language, say, English but the words and phrases used by one
customer or group of customers differs from the words and phrases used
by a different customer or group of customers. This is more common

than it sounds. The accounting industry, for example, suffers this
dilemma where the words “practice” and “site” mean different things to
different people. You could create custom cultures for specific customers
so, for example, you could create an English (United States, Sirius
Cybernetics Corporation) custom culture which exists to serve the Sirius
Cybernetics Corporation customer and an English (United States,
Megadodo Publications) custom culture which exists to server the
Megadodo Publications customer. Both cultures would have a parent of
English (United States) or just English so that the majority of text would
be common to all English customers. The Sirius Cybernetics Corporation
would have resources which used their own commercial dialect and
likewise Megadodo Publications would have resources which used their
own commercial dialect. The benefit to the developers is that the
application has a single code base while still catering to the needs of
individual customers.

Using CultureAndRegionInfoBuilder
Creating a custom culture involves two steps:-

Defining the custom culture
Registering the custom culture

Both steps are achieved using the .NET Framework 2.0
CultureAndRegionInfoBuilder class. We will start with a simple example
creating a replacement culture in order to see the process through from
beginning to end and then return to the subject of creating custom
cultures later to create more complex custom cultures.

The following code creates a replacement custom culture and
registers it:-

CultureAndRegionInfoBuilder builder =
 new CultureAndRegionInfoBuilder("tr-TR",
 CultureAndRegionModifiers.Replacement);

builder.NumberFormat.CurrencySymbol = "YTL";
builder.CurrencyEnglishName = "New Turkish Lira";
builder.CurrencyNativeName = "Yeni Türk Lirasi";
builder.ISOCurrencySymbol = "YTL";

builder.Register();

The CultureAndRegionInfoBuilder constructor accepts two
parameters: the custom culture name and an enumeration identifying
what kind of custom culture the new culture is. In this example the
culture is a replacement for the tr-TR (Turkish (Turkey)) culture which
changes its currency. The replacement culture is “registered” using the
Register method. Once registered all .NET 2.0 applications on this
machine will use the modified tr-TR culture instead of the original
without any change to those applications.

Installing/Registering Custom Cultures
The CultureAndRegionInfoBuilder Register method performs two

actions:-

It creates an NLP file in the system’s Globalization folder
It adds an entry to the registry in

HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Control\Nls\IetfLanguage

The NLP file is a binary representation of the custom culture. There
is no API for this file format so you must treat it like a black box. The
file is placed in %WINDIR%\Globalization and given the same name as
the custom culture e.g. c:\Windows\Globalization\tr-TR.NLP.

The registry entry provides the IetfLanguage name for the custom
culture for static CultureInfo methods. The key is the custom culture’s
IetfLanguage and the value is the semi-colon separated list of custom
culture names which share the same IetfLanguage. So after the call to
Register in the example there will be an entry with a key of “tr-TR” and
a value of “tr-TR” indicating that the tr-TR custom culture has an
IetfLanguage of “tr-TR”.

This approach is fine for registering the custom culture on your own
machine but it isn’t very generic. If you want to create three custom
cultures, say, tr-TR, fr-FR and en-GB on your users’ machines you
would either have to create one application called say
CreateAndRegisterAllThreeCultures or else create three separate
applications, say, Create_trTR_Culture, Create_frFR_Culture and
Create_enGB_Culture. A better solution is to create a single custom

culture registration program and pass it custom culture files. In the
source code for this book you will find the RegisterCustomCulture
console application which exists for this purpose. RegisterCustomCulture
accepts one or more LDML custom culture files to register. LDML is
Locale Data Markup Language and is defined in Unicode Technical
Standard #35 (http://www.unicode.org/reports/tr35/). It is an extensible
XML format for the exchange of structured locale data and is the format
chosen by Microsoft to import and export custom cultures. An LDML
file can be created using the CultureAndRegionInfoBuilder.Save method
so the previous example could be re-written like this:-

CultureAndRegionInfoBuilder builder =
 new CultureAndRegionInfoBuilder("tr-TR",
 CultureAndRegionModifiers.Replacement);

builder.NumberFormat.CurrencySymbol = "YTL";
builder.CurrencyEnglishName = "New Turkish Lira";
builder.CurrencyNativeName = "Yeni Türk Lirasi";
builder.ISOCurrencySymbol = "YTL";

builder.Save("tr-TR.xml");

This code would become part of the application’s build process,
resulting in the tr-TR.xml file which would become part of the
application’s installation process. The file can be loaded simply by using
the CultureAndRegionInfoBuilder.CreateFromLdml method:-

CultureAndRegionInfoBuilder builder =
 CultureAndRegionInfoBuilder.CreateFromLdml(
 "tr-TR.xml");

builder.Register();

The important parts of the RegisterCustomCulture console
application are:-

static void Main(string[] args)
{
 Console.WriteLine(
 "RegisterCustomCulture registers custom " +
 "cultures for the .NET Framework from " +
 "LDML/XML files");
 Console.WriteLine("");

 if (args.GetLength(0) == 0)
 ShowSyntax();
 else if (AllFilesExist(args))
 {
 RegisterCustomCultures(args);
 }
}

private static void RegisterCustomCultures(
 string[] customCultureFiles)
{
 foreach (string customCultureFile in
 customCultureFiles)
 {
 if (customCultureFile.StartsWith("/u:") ||
 customCultureFile.StartsWith("/U:"))
 {
 string customCultureName =
 customCultureFile.Substring(3);

 CultureAndRegionInfoBuilder.Unregister(
 customCultureName);

 Console.WriteLine(
 "{0} custom culture unregistered",
 customCultureName);
 }
 else
 {
 CultureAndRegionInfoBuilder builder =
 CultureAndRegionInfoBuilder.
 CreateFromLdml(customCultureFile);

 builder.Register();

 Console.WriteLine(
 "{0} custom culture registered",

 customCultureFile);
 }
 }
 Console.WriteLine("");
 Console.WriteLine("Registration complete.");
}

The RegisterCustomCulture application simply iterates through each
of the command line parameters. If the parameter starts with “/u:” then it
attempts to un-register an existing custom culture otherwise it attempts to
load the parameters as LDML files and then register them.

It is worth noting, however, that as the Register method writes to the
registry and to the system’s Globalization folder any code which uses it
requires administrator rights to execute. This means that if you intend to
deploy applications which use custom cultures then the application
which creates the custom cultures (e.g. RegisterCustomCulture.exe) must
obviously have administrator rights. If you deploy your Windows Forms
applications using ClickOnce you should create your custom cultures
using the ClickOnce Bootstrapper as the ClickOnce application itself will
not be granted administrator rights.

Uninstalling/Un-registering Custom Cultures
Custom cultures can be unregistered using the static

CultureAndRegionInfoBuilder.Unregister method:-
CultureAndRegionInfoBuilder.Unregister("tr-TR");

This method attempts to undo the two steps of the Register method
(it deletes the registry key and attempts to delete the NLP file). The
attempt to delete the NLP file may or may not be successful. The
Unregister method looks to see if the custom culture is referenced by
other custom cultures and in the process of doing so it can open the NLP
file itself and be the cause of its own failure. This is why it is possible to
attempt to unregister a custom culture even after rebooting the machine
and still have it fail. In this case the Unregister method simply renames
the file’s extension to “tmp0” (e.g. “tr-TR.tmp0”). There is no
subsequent cleanup so the temporary files remain in the Globalization
folder indefinitely. This is an important point if your application registers
a custom culture at startup and then un-registers as the application is

shutting down. Also note that Unregister also requires administrator
rights.

Public Custom Cultures And Naming
Conventions

The custom cultures that you create using the .NET Framework 2.0
are all public. There is no concept of a private custom culture. Let’s
consider what this means for a moment. The registry key is public; the
NLP file is placed in a public location; the culture’s name is public. This
means that the cultures that you create live in the same space as the
cultures that everyone else creates. We’ve seen this scenario before with
DLLs and it was often referred to as DLL Hell. Welcome to Custom
Culture Hell. The problem here is that when you create a custom culture
and install it on a machine you don’t know if someone else has already
created a culture with the same name or if in the future they will create a
culture with the same name. This is especially a problem with
replacement cultures like the one in the first example. The new tr-TR
culture simply modifies the currency. If someone else, possibly from
another company, had already created a tr-TR culture on the same
machine then your attempt to register your tr-TR culture would fail
because a custom culture with that name already exists. At this point you
have two choices: (1) don’t install your culture and respect the original
application’s tr-TR culture and hope that it doesn’t prevent your
application from working properly or (2) go ahead and overwrite their
custom culture with your custom culture. The first approach represents
the very definition of optimism and the second approach will give you
the kind of reputation that was given to vendors when they overwrote
existing DLLs in the DLL Hell scenario. Alternatively, consider what
would happen if your application was installed on a machine first. All
would be well right up until the second application overwrote your
custom culture with their definition of the same culture. Their application
would function correctly. The best case scenario for your application is
that it would fail. The worst case scenario is more likely though as your
application would continue to function but be incorrect.

There are a number of limited solutions depending on whether you
are creating a replacement custom culture or a supplementary custom
culture. We will start with supplementary custom cultures. A

supplementary custom culture is a completely new culture which the
.NET Framework and the operating system have not seen before. The
best solution here is to solve the problem by avoiding the problem (this is
often my favorite solution to any problem). The solution lies in using a
naming convention where uniqueness is built into name. A simple
solution would be to suffix the culture name with your companies’ name.
So if you create a supplementary custom culture for Bengali as spoken in
Bangladesh (i.e. “bn-BD”) and your company is the Acme Corporation
then you would name the culture “bn-BD-Acme”. Alternatively you
could take a more certain but completely unreadable solution of suffixing
with a GUID e.g. “bn-BD-b79a80f4-2e22-4af5-9b79-e362304b-5b10”
(note that the GUID has been split into chunks of 8 characters or less, see
below). The naming convention solution also has the benefit of being
future-proof. Change is certain. Microsoft will add new cultures to
Windows. If Microsoft adds the bn-BD culture to Windows then code
which creates a custom “bn-BD” culture which used to work will now
throw an exception in the CultureAndRegionInfoBuilder constructor:-

CultureAndRegionInfoBuilder builder =
 new CultureAndRegionInfoBuilder("bn-BD",
 CultureAndRegionModifiers.None);

If the culture name is suffixed to make the culture name unique then
it cannot clash with new cultures or other companies’ custom cultures.
The downside to this naming is that it is a considerable abuse of the IETF
tag which the suffix replaces. You need to take a judgment on which is
the lesser evil.

If you are creating a replacement culture such as tr-TR then your
options are quite limited because if it is truly to be a replacement culture
then changing the name is not an option. One option would be to set up
or seek out a public registry on the Internet for replacement custom
cultures. If such a registry existed it could be used to track requests for
changes to existing cultures and offer a “standard” replacement culture
upon which well behaved applications could agree. The “standard”
replacement culture would be the sum of all agreed changes. Such a co-
operative solution is optimistic and not guaranteed and could only be
seen as a “gentleman’s agreement”. Alternatively you could simply
overwrite the opposition’s replacement culture with your own.
Immediately before your call to CultureAndRegionInfoBuilder.Register
add the following code:-

try
{

 CultureAndRegionInfoBuilder.Unregister(
 "tr-TR");
}
catch (ArgumentException)
{
}

This code attempts to un-register any existing tr-TR culture and
ignores any exception which would result from an existing tr-TR
replacement culture not existing. If you choose this approach be prepared
for some hate mail. The only guaranteed solution is to use a
supplementary custom culture instead of a replacement custom culture
and use the naming convention suggested above to avoid a clash. The
custom culture would then be called something like “tr-TR-Acme”
instead of “tr-TR”. The obvious downside to this solution is that the
custom culture is no longer a replacement custom culture. This would
mean that your application would need to take certain steps to ensure that
the tr-TR-Acme culture was used instead of the tr-TR culture.

Regardless of how you approach this problem you should be aware
of the limits on custom culture names. The maximum length of a custom
culture name is 84 characters and each “tag” within the name is limited
to 8 characters. A “tag” is a block of letters and numbers which is
delimited by a dash (“-”) or an underscore (“_”). So a name of “tr-TR-
AcmeSoftware” is invalid because the “AcmeSoftware” tag is 12
characters long. You could work around this by delimiting words using
dashes or underscores e.g. “tr-TR-Acme-Software” or “tr-TR-
Acme_Software”.

Supplementary Replacement Custom
Cultures

A “supplementary replacement” custom culture certainly sounds like
a contradiction in terms. It is the term that I use to describe a
supplementary custom culture which exists for the purposes of replacing
an existing custom culture without actually replacing it. In the “Public
Custom Cultures And Naming Conventions” section I discussed the
problems with replacement custom cultures and suggested a solution
where instead of creating a replacement custom culture a new
supplementary custom culture could be created which was in every way

like the intended replacement custom culture. Creating a new custom
culture which is like an existing custom culture is made easy for us by
using the LoadDataFromCultureInfo and LoadDataFromRegionInfo
methods. Here is the code for creating a tr-TR-Acme supplementary
replacement custom culture:-

CultureInfo cultureInfo = new CultureInfo("tr-TR");
RegionInfo regionInfo =
 new RegionInfo(cultureInfo.Name);

CultureAndRegionInfoBuilder builder =
 new CultureAndRegionInfoBuilder("tr-TR-Acme",
 CultureAndRegionModifiers.None);

// load in the data from the existing culture
// and region
builder.LoadDataFromCultureInfo(cultureInfo);
builder.LoadDataFromRegionInfo(regionInfo);

// make custom changes to the culture
builder.NumberFormat.CurrencySymbol = "YTL";
builder.CurrencyEnglishName = "New Turkish Lira";
builder.CurrencyNativeName = "Yeni Türk Lirasi";
builder.ISOCurrencySymbol = "YTL";

builder.Register();

The LoadDataFromCultureInfo and LoadDataFromRegionInfo
methods set CultureAndRegionInfoBuilder properties from the data in
the CultureInfo and RegionInfo objects respectively. Tables 11.3 and
11.4 show the properties set by these methods.
CultureAndRegionInfoBuilder
Property

Source

AvailableCalendars CultureInfo.OptionalCalendars (Specific
Cultures only)

CompareInfo CultureInfo.CompareInfo (Supplementary only)

ConsoleFallbackUICulture CultureInfo.GetConsoleFallbackUICulture()

CultureEnglishName CultureInfo.EnglishName

CultureNativeName CultureInfo.NativeName

GregorianDateTimeFormat CultureInfo.DateTimeFormat (Specific Cultures
only)

IetfLanguageTag CultureInfo.IetfLanguageTag

IsRightToLeft CultureInfo.TextInfo.IsRightToLeft

KeyboardLayoutId CultureInfo.KeyboardLayoutId

NumberFormat CultureInfo.NumberFormat (Specific Cultures
only)

Parent CultureInfo.Parent

TextInfo CultureInfo.TextInfo (Supplementary only)

ThreeLetterISOLanguageName CultureInfo.ThreeLetterISOLanguageName

ThreeLetterWindowsLanguageName CultureInfo.ThreeLetterWindowsLanguageName
(Supplementary only)

TwoLetterISOLanguageName CultureInfo.TwoLetterISOLanguageName

Table 11.3 Properties Set By
CultureAndRegionInfoBuilder.LoadDataFromCultureInfo
CultureAndRegionInfoBuilder
Property

Source

CurrencyEnglishName RegionInfo.CurrencyEnglishName

CurrencyNativeName RegionInfo.CurrencyNativeName

GeoId RegionInfo.GeoId

IsMetric RegionInfo.IsMetric

ISOCurrencySymbol RegionInfo.ISOCurrencySymbol

RegionEnglishName RegionInfo.EnglishName

RegionNativeName RegionInfo.NativeName

ThreeLetterISORegionName RegionInfo.ThreeLetterISORegionName

ThreeLetterWindowsRegionName RegionInfo.ThreeLetterWindowsRegionName
(Supplementary only)

TwoLetterISORegionName RegionInfo.TwoLetterISORegionName

Table 11.4 Properties Set By
CultureAndRegionInfoBuilder.LoadDataFromRegionInfo

Notice that the CompareInfo, TextInfo,
ThreeLetterWindowsLanguageName and
ThreeLetterWindowsRegionName properties are only set by these
methods if the culture is a supplementary culture (which in this example
it is). For replacement cultures these properties are set in the
CultureAndRegionInfoBuilder constructor and are considered
immutable. Consequently if you assign values to these properties for

replacement cultures they will throw an exception. This is the reason
why you can’t create a replacement custom culture which simply
changes the default sort order. This code attempts to create a replacement
culture for es-ES (Spanish (Spain)) where the only difference is that the
sort order is Traditional (0x0000040A) instead of the default
International:-

CultureAndRegionInfoBuilder builder =
 new CultureAndRegionInfoBuilder("es-ES",
 CultureAndRegionModifiers.Replacement);

builder.CompareInfo =
 CompareInfo.GetCompareInfo(0x0000040A);

builder.Register();

The assignment to CompareInfo throws a NotSupportedException. A
benefit, therefore, of using a supplementary custom culture as opposed to
a replacement culture is that these properties can have different values to
those of the original culture.

In addition to the public properties in Table 11.3 the
LoadDataFromCultureInfo method also sets internal values for
DurationFormats, FontSignature and PaperSize. These values are used in
the LDML file created by the Save method. The
LoadDataFromCultureInfo method represents the only way to set these
properties.

The resulting supplementary custom culture does not have the
complete functionality of the replacement custom culture. One difference
lies in the behavior of the CultureInfo.DisplayName property. This
property has a certain level of intelligence built into it. The DisplayName
property returns the name of the culture for the CurrentCulture for built
in .NET Framework and Windows cultures. This means that the
DisplayName for the fr-FR culture is “French (France)” when the
CurrentCulture is “en-US” but it is “Français (France)” and “Französisch
(Frankreich)” when the CurrentCulture is “fr-FR” and “de-DE”
respectively and the French and German .NET Language Packs have
been installed. Replacement cultures adopt the same functionality
because the .NET Framework can identify that the culture is a culture
that is known. The same functionality is not available to supplementary
custom cultures because the .NET Framework cannot and should not
guess at the correct DisplayName. Consequently the DisplayName of a

supplementary custom culture is the same as the native name. Table 11.5
shows the difference in behavior.
CurrentCulture tr-TR Replacement Culture

DisplayName
tr-TR Supplementary Culture
DisplayName

en-US Turkish (Turkey) Türkçe (Türkiye)

tr-TR Türkçe (Türkiye) Türkçe (Türkiye)

Table 11.5 CultureInfo.DisplayName Behavioral Difference For
Replacement And Supplementary Custom Cultures

The same difference in behavior is true for
RegionInfo.DisplayName.

Custom Culture Locale IDs
Another difference between supplementary custom cultures and

replacement custom cultures is their locale ID (i.e. CultureInfo.LCID).
CultureAndRegionInfoBuilder.LCID is read-only. Replacement custom
cultures use the same locale ID as the cultures which they replace. This is
very helpful as it means that there is no backdoor through to the original
culture. In the following example both lines result in the same
CultureInfo:-

CultureInfo cultureInfo1 =
 new CultureInfo("tr-TR");
// The LCID for tr-TR is 1055
CultureInfo cultureInfo2 = new CultureInfo(1055);

In almost all cases this behavior is desirable. It does mean, however,
that it is not possible to create a CultureInfo for the original replaced
culture even if you wanted to. If this were absolutely necessary you
would have to save the replacement custom culture to an LDML file, un-
register it, create an original CultureInfo object, extract the information
you need and then load the LDML file and register the replacement
custom culture again.

Supplementary custom cultures all have the same locale ID: 0x1000
(4096). So the “bn-BD” (Bengali (Bangladesh)) locale ID is 4096 and the
tr-TR-Acme locale ID is also 4096. Consider the following test for
equality for these two cultures:-

CultureInfo cultureInfo1 =

 new CultureInfo("bn-BD");

CultureInfo cultureInfo2 =
 new CultureInfo("tr-TR-Acme");

if (! cultureInfo1.Equals(cultureInfo2))
 MessageBox.Show(
 "CultureInfo objects are not the same");

The CultureInfo.Equals method reports that these cultures are not
equal even though their LCIDs are the same. Two CultureInfo objects are
considered equal in the .NET Framework 2.0 if they are the same object
or their Names and CompareInfo objects are the same. This contrasts to
the .NET Framework 1.1 implementation which is simply based upon a
comparison of LCIDs and not object references or Names.

Also note that as all supplementary custom cultures share the same
LCID it is not possible to create a supplementary custom culture using its
LCID and the following code results in an ArgumentException (“Culture
ID 4096 (0x1000) is not a supported culture”):-

CultureInfo cultureInfo1 = new CultureInfo(4096);

You should conclude from this that if you store the identities of
cultures in a database or configuration file then your method should
always be able to store the culture name instead of the culture LCID for
custom cultures. Unfortunately this is in contrast with the advice for
handling alternative sort orders which is to store the LCIDs so that it is
possible to create cultures with alternative sort orders (for the Traditional
sort order for Spanish for example). The result is that your storage
method will need to store the culture name for custom cultures and, if
you intend to support alternative sort orders, store the LCIDs for cultures
with alternative sort orders. If you want to enforce this in your
applications look at the “CultureInfo must not be constructed from
LCID” and “RegionInfo must not be constructed from LCID” FxCop
rules in Chapter 13, Testing Internationalization Using FxCop.

Before we leave the subject of alternative sort orders it is worth
pointing out that as the custom culture mechanism is based upon culture
names and not culture LCIDs it is not possible to create replacement
custom cultures for a culture with an alternative sort order. You can,
however, create a “supplementary replacement” custom culture for an
alternative sort order:-

// create the es-ES culture with the Traditional

// sort order
CultureInfo cultureInfo = new CultureInfo(0x040A);
RegionInfo regionInfo =
 new RegionInfo(cultureInfo.Name);

CultureAndRegionInfoBuilder builder =
 new CultureAndRegionInfoBuilder(
 "es-ES-Tradnl-Acme",
 CultureAndRegionModifiers.None);

// load in the data from the existing culture
// and region
builder.LoadDataFromCultureInfo(cultureInfo);
builder.LoadDataFromRegionInfo(regionInfo);

// make custom changes to the culture
...
...

builder.Register();

Custom Culture Parents And Children
As you know there is a hierarchy to CultureInfo objects where

specific cultures (e.g. “en-US”) fallback to neutral cultures (e.g. “en”)
which fallback to the invariant culture. This hierarchy manifests itself
through the CultureInfo.Parent property. Custom cultures fit into this
hierarchy but they are not restricted to the existing pattern of just three
levels of cultures nor that specific cultures have parent neutral cultures.
Let’s look at two examples. The first is a hierarchy of tr-TR custom
cultures where the Parent property is not explicitly set in code and is left
in the hands of the LoadDataFromCultureInfo method:-

BuildCulture("Turkish (Turkey) Acme" ,
 "tr-TR-Acme" , "tr-TR");

BuildCulture("Turkish (Turkey) Acme Child" ,

 "tr-TR-Acme-Child" , "tr-TR-Acme");

BuildCulture("Turkish (Turkey) Acme Grandchild",
 "tr-TR-Acme-GrandC", "tr-TR-Acme-Child");

private void BuildCulture(string englishName,
 string cultureName, string loadFromCultureName)
{
 CultureInfo cultureInfo =
 new CultureInfo(loadFromCultureName);

 RegionInfo regionInfo =
 new RegionInfo(cultureInfo.Name);

 CultureAndRegionInfoBuilder builder = new

CultureAndRegionInfoBuilder(cultureName,
 CultureAndRegionModifiers.None);

 builder.LoadDataFromCultureInfo(cultureInfo);
 builder.LoadDataFromRegionInfo(regionInfo);
 builder.CultureEnglishName = englishName;

 builder.Register();

}

The result of this code might not be what you would expect. Figure
11.1 shows the resulting hierarchy.

Figure 11.1 Hierarchy Of Custom Cultures When Parent Is Set By

LoadDataFromCultureInfo
The LoadDataFromCultureInfo method sets the Parent property to

CultureInfo.Parent so in the first call to BuildCulture the tr-TR-Acme’s
parent is tr (Turkish). In the second call to BuildCulture the tr-TR-Acme-
Child’s parent is also tr (Turkish) because it gets the tr-TR-Acme’s
parent. If you were looking to create a hierarchy where the parent is the
culture from which the data is being read then you will need to explicitly
set the CultureAndRegionInfoBuilder’s Parent. Add the following line
after the call to LoadDataFromCultureInfo:-

builder.Parent = cultureInfo;

The result is the hierarchy shown in Figure 11.2.

Figure 11.2 Hierarchy Of Custom Cultures When Parent Is

Explicitly Set
Now let’s look at this subject from a different point of view. The

CultureInfo.CreateSpecificCulture method creates a specific culture from

either a specific culture (in which case it simply returns the same specific
culture) or a neutral culture. So if you pass the French culture to
CreateSpecificCulture it returns a new culture French (France) and
similarly German returns German (Germany). This is of interest to
custom culture developers because this behavior cannot be specified.
How important this is probably depends upon whether you create a
replacement custom culture or a supplementary custom culture. If you
create a replacement custom culture for “en” you will not be able to
change the specific culture from “en-US” to, say, “en-GB”. This could
have been quite a useful course of action. Consider that you are creating
a website for Nottingham Forest Football Club in the UK. If your users’
browsers’ language settings are “en” then it is unhelpful if you use
CultureInfo.CreateSpecificCulture because it will return a culture for
“en-US” which will be wrong for nearly all of your visitors (for whom
“en-GB” would have been more appropriate). The same is true for the
Toronto Maple Leafs website (in Canada) where CreateSpecificCulture
would return French (France) from French instead of the more useful
French (Canada).

Similarly, if you create a supplementary custom culture for, say,
Bengali (“bn”) then you have no means of specifying what the specific
culture should be (e.g. “Bengali (Bangladesh)”).

Support For Custom Cultures
Custom cultures are supported not only in the .NET Framework 2.0

but also in Microsoft’s .NET Framework 2.0 development tools. The
.NET Framework 2.0 allows you to get a list of custom cultures using
CultureInfo.GetCultures:-

foreach (CultureInfo cultureInfo in
 CultureInfo.GetCultures(
 CultureTypes.UserCustomCulture))
{
 listBox1.Items.Add(
 cultureInfo.Name + " (" +
 cultureInfo.DisplayName + ")");
}

The CultureTypes value is UserCustomCulture. You can test a
culture to see if it is a custom culture using its CultureTypes property:-

CultureInfo cultureInfo = new CultureInfo("tr-TR");
if ((CultureTypes.UserCustomCulture &
 cultureInfo.CultureTypes)
 != (CultureTypes)0)
 Text = "User Custom Culture";
else
 Text = "Not User Custom Culture";

The Visual Studio 2005 Form Designer also supports custom
cultures. When you localize a form by setting Form.Localizable to true
the Form.Language combo box includes custom cultures.

Note: The combo box is filled using
CultureInfo.DisplayName. Recall that for
supplementary custom cultures
CultureInfo.DisplayName is always
CultureInfo.NativeName and not
CultureInfo.EnglishName so your custom culture
might not be where you expect it to be in the
sorted list.

Like Visual Studio 2005, WinRes, the Windows Resource
Localization Editor, also supports custom cultures and allows forms
resources for custom cultures to be opened and saved.

ClickOnce supports custom cultures in both Visual Studio and Mage
(Manifest Generation and Editing Tool). In Visual Studio in the
ClickOnce Publish properties (in Solution Explorer double click
Properties then select the Publish tab) click on the “Options…” button
and you can set the “Publish language” (see Figure 11.3). Mage also
supports custom cultures in the same way.

Figure 11.3 Setting The ClickOnce Publish Language To A Custom

Culture
If you want the ClickOnce bootstrapper to use the language of your

custom culture you will need to create a new folder beneath the
Bootstrapper\Engine folder with the name of your culture (e.g. “bn-BD”)
containing a setup.xml with translated strings. You can copy the
setup.xml from the Bootstrapper\Engine\en folder to use a starting point
for your custom culture.

The support for custom cultures is limited to the .NET Framework.
As a consequence the Regional and Language Options dialog does not
include custom cultures. If you use this as a means of setting the user’s
CurrentCulture and CurrentUICulture preferences then the user will not
be able to use custom cultures. Similarly other tools which are not based
on the .NET Framework 2.0 will not recognize the custom cultures so,
for example, it may not be possible to use third party translation tools.

ASP.NET applications can use custom cultures without any
modifications. If the user sets their language preferences in their browser
to a custom culture and the Culture and UICulture tags are set to auto
then the custom culture will be used automatically. In addition you can
easily localize the ASP.NET 2 Website Administration Tool for your
custom culture by creating new resx files in the Website Administration
Tool’s folder. See Chapter 5, ASP.NET Specifics for more details.

Supplementary Custom Cultures
A supplementary culture is a culture which is new to the .NET

Framework and the operating system. We will see a number of examples
of supplementary custom cultures in this chapter. We will start with the
greatest challenge which is to create a supplementary custom culture
from scratch without any existing CultureInfo or RegionInfo to draw
from. For this example we create a culture for Bengali (also called
Bangla) in Bangladesh. The second example which creates a
supplementary custom culture from scratch is a pseudo translation
custom culture.

Bengali (Bangladesh) Custom Culture
At the time of writing the Bengali (Bangladesh) culture, which we

will label “bn-BD”, is not known to the .NET Framework nor any
version of Windows but, as has already been mentioned, it is entirely
possible that this situation won’t last and the “bn-BD” culture will arrive
in some version of Windows in the future. However, these future events
do not invalidate this example. Consider that at such a time you have a
choice between forcing all of your users to upgrade to the new version of
Windows (not necessarily possible) or using a custom culture which will
work on all versions of Windows. The latter choice is the more practical
choice. The same caveats regarding your culture naming convention
apply in this scenario so although you may want to ‘personalize’ your
bn-BD culture name (e.g. “bn-BD-Acme”) I will use “bn-BD” in this
example for simplicity. Finally if you run this example you should install
support for complex scripts to be able to see the Bengali script.

The following code creates the Bengali (Bangladesh) custom
culture:-

public static void
 RegisterBengaliBangladeshCulture()
{
 CreateBengaliBangladeshCultureAnd
 RegionInfoBuilder().Register();
}
public static CultureAndRegionInfoBuilder
 CreateBengaliBangladeshCultureAnd
 RegionInfoBuilder()

{
 CultureAndRegionInfoBuilder builder =
 new CultureAndRegionInfoBuilder("bn-BD",
 CultureAndRegionModifiers.None);

 builder.Parent = CultureInfo.InvariantCulture;

 builder.CultureEnglishName =
 "Bengali (Bangladesh)";
 builder.CultureNativeName = "বাঙলা (Bāγlādesh)";
 builder.ThreeLetterISOLanguageName = "ben";
 builder.ThreeLetterWindowsLanguageName = "ben";
 builder.TwoLetterISOLanguageName = "bn";

 builder.RegionEnglishName = "Bangladesh";
 builder.RegionNativeName = "Bāγlādesh";
 builder.ThreeLetterISORegionName = "BGD";
 builder.ThreeLetterWindowsRegionName = "BGD";
 builder.TwoLetterISORegionName = "BD";

 builder.IetfLanguageTag = "bn-BD";

 builder.IsMetric = true;
 builder.KeyboardLayoutId = 1081;
 builder.GeoId = 0x17; // Bangladesh

 builder.GregorianDateTimeFormat =
 CreateBangladeshDateTimeFormatInfo();

 builder.NumberFormat =
 CreateBangladeshNumberFormatInfo();
 builder.CurrencyEnglishName =
 "Bangladesh Taka";
 builder.CurrencyNativeName = "Bangladesh Taka";
 builder.ISOCurrencySymbol = "BDT";

 builder.TextInfo =

 CultureInfo.InvariantCulture.TextInfo;

 builder.CompareInfo =
 CultureInfo.InvariantCulture.CompareInfo;

 return builder;
}

The bn-BD parent is the Invariant culture and you may want to
consider creating this culture in two steps, first creating a neutral Bengali
culture and then creating a specific Bengali (Bangladesh) culture. There
are a few values for which you should seek out a standard:-

The culture name, bn-BD, is obviously of critical importance
and you should seek out existing codes (if any) for this
purpose. A list of language codes can be found at
http://www.w3.org/WAI/ER/IG/ert/iso639.htm. Alternatively
the official ISO list can be purchased from http://www.iso.org
(search for 639). The list of country codes is available from
http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-
3166-code-lists/list-en1.html. Alternatively the official ISO
list can be purchased from http://www.iso.org (search for
3166).
The GeoId value is available from Microsoft’s Table Of
Geographical Locations
(http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/intl/nls_locations.asp). If your geographical region is not
listed in this table then you will either have to leave the ID
blank or else choose a number which is not in use (of course,
the number could subsequently become used for a completely
different geographical region which would invalidate your
choice).

The CultureAndRegionInfoBuilder.NumberFormatInfo is assigned
from the CreateBangladeshNumberFormatInfo method:-

private static NumberFormatInfo
 CreateBangladeshNumberFormatInfo()
{
 NumberFormatInfo numberFormatInfo =
 new NumberFormatInfo();
 numberFormatInfo.CurrencyDecimalDigits = 2;

 numberFormatInfo.CurrencyDecimalSeparator =
 ".";
 numberFormatInfo.CurrencyGroupSeparator = ",";
 numberFormatInfo.CurrencyGroupSizes =
 new int[] { 3, 2 };
 numberFormatInfo.CurrencyNegativePattern = 12;
 numberFormatInfo.CurrencyPositivePattern = 2;
 numberFormatInfo.CurrencySymbol = "BDT";
 numberFormatInfo.DigitSubstitution =
 DigitShapes.None;
 numberFormatInfo.NaNSymbol = "NaN";
 numberFormatInfo.NativeDigits = new string[]
 { "0", "1", "2", "3", "4", "5", "6", "7",
 "8", "9" };
 numberFormatInfo.NegativeInfinitySymbol =
 "-Infinity";
 numberFormatInfo.NegativeSign = "-";
 numberFormatInfo.NumberDecimalDigits = 2;
 numberFormatInfo.NumberDecimalSeparator = ".";
 numberFormatInfo.NumberGroupSeparator = ",";
 numberFormatInfo.NumberGroupSizes =
 new int[] { 3, 2 };
 numberFormatInfo.NumberNegativePattern = 1;
 numberFormatInfo.PercentDecimalDigits = 2;
 numberFormatInfo.PercentDecimalSeparator = ".";
 numberFormatInfo.PercentGroupSeparator = ",";
 numberFormatInfo.PercentGroupSizes =
 new int[] { 3, 2 };
 numberFormatInfo.PercentNegativePattern = 0;
 numberFormatInfo.PercentPositivePattern = 0;
 numberFormatInfo.PercentSymbol = "%";
 numberFormatInfo.PerMilleSymbol = "‰";
 numberFormatInfo.PositiveInfinitySymbol =
 "Infinity";
 numberFormatInfo.PositiveSign = "+";
 return numberFormatInfo;
}

The CultureAndRegionInfoBuilder.DateTimeFormatInfo is assigned
from the CreateBangladeshDateTimeFormatInfo method:-

private static DateTimeFormatInfo
 CreateBangladeshDateTimeFormatInfo()
{
 Calendar calendar =
 new GregorianCalendar(
 GregorianCalendarTypes.Localized);

 DateTimeFormatInfo dateTimeFormatInfo =
 new DateTimeFormatInfo();

 dateTimeFormatInfo.Calendar = calendar;

 dateTimeFormatInfo.AbbreviatedDayNames =
 new string[]
 { "রিব.", "েসাম.", "মǩল.", "বধু.", "বহৃsিত.",
 "শkু.", "শিফ." };
 dateTimeFormatInfo.DayNames =
 new string[] { "রিববার", "েসামবার", "মǩলবার",
 "বধুবার", "বহৃsিতবার", "শkুবার", "শিফবার" };
 dateTimeFormatInfo.ShortestDayNames =
 new string[] { "রিব.", "েসাম.", "মǩল.", "বধু.",
 "বহৃsিত.", "শkু.", "শিফ." };

 dateTimeFormatInfo.AbbreviatedMonthNames =
 new string[] { "জান.ু", "েফb.", "মাচŪ", "eিpল",
 "েম", "জনু", "জলুাi", "আগ.", "েসেp.", "aেkা.",
 "নেভ.", "িডেস.", "" };
 dateTimeFormatInfo.MonthNames =
 new string[] { "জানšুারী", "েফbšারী", "মাচŪ", "eিpল",
 "েম", "জনু", "জলুাi", "আগs", "েসেpmর", "aেkাবর",
 "নেভmর", "িডেসmর", "" };

 dateTimeFormatInfo.
 AbbreviatedMonthGenitiveNames =
 new string[] { "জান.ু", "েফb.", "মাচŪ", "eিpল",

 "েম", "জনু", "জলুাi", "আগ.", "েসেp.", "aেkা.",
 "নেভ.", "িডেস.", "" };
 dateTimeFormatInfo.MonthGenitiveNames =
 new string[] { "জানšুারী", "েফbšারী", "মাচŪ", "eিpল",
 "েম", "জনু", "জলুাi", "আগs", "েসেpmর", "aেkাবর",
 "নেভmর", "িডেসmর", "" };

 dateTimeFormatInfo.AMDesignator = "পুবŪাƔফ";
 dateTimeFormatInfo.CalendarWeekRule =
 CalendarWeekRule.FirstDay;
 dateTimeFormatInfo.DateSeparator = "-";
 dateTimeFormatInfo.FirstDayOfWeek =
 DayOfWeek.Monday;
 dateTimeFormatInfo.FullDateTimePattern =
 "dd MMMM yyyy HH:mm:ss";
 dateTimeFormatInfo.LongDatePattern =
 "dd MMMM yyyy";
 dateTimeFormatInfo.LongTimePattern =
 "HH:mm:ss";
 dateTimeFormatInfo.MonthDayPattern = "dd MMMM";
 dateTimeFormatInfo.PMDesignator = "aপরাƔফ";
 dateTimeFormatInfo.ShortDatePattern =
 "dd-MM-yyyy";
 dateTimeFormatInfo.ShortTimePattern = "HH:mm";
 dateTimeFormatInfo.TimeSeparator = ":";
 dateTimeFormatInfo.YearMonthPattern =
 "MMMM, yyyy";

 return dateTimeFormatInfo;
}

Note: The assignment of the Calendar object to
the DateTimeFormatInfo.Calendar property
must occur before the assignment of day and
month names because the setting of the
Calendar property resets these values.

The Bengali (Bangladesh) culture can now be used like any other
.NET Framework culture.

Pseudo Translation Custom Culture
The Pseudo Translation custom culture is another custom culture

which is created without drawing upon any existing culture or region
information. The purpose of this custom culture is to provide support for
the pseudo translation described in Chapter 9, Machine Translation
where developers and testers can use a culture other than the developer’s
own culture and can test that the application is globalized and localized
and still be able to use the application without having to learn another
language. The complete code for the pseudo translation custom culture is
not shown here as it is identical to the previous example with the
exception that the values are different. The pseudo translation custom
culture values themselves are only important in that they must not be the
same as an existing culture. This allows developers and testers to observe
that globalization and localization is occurring. This is a little trickier
than it might at first seem. The first problem is that in choosing suitable
language and region codes for the pseudo translation culture you should
avoid existing codes. You might think of using “ps-PS” (for (Pseudo
(Pseudo)) but the “ps” language code and “PS” region code have already
been taken. Refer to the links in the Bengali (Bangladesh) custom culture
to avoid choosing identifiers which are already taken. I have chosen “pd-
PD” because these are still free at the time of writing. However, to ensure
future safety of your choice the safest solution is to choose a code which
does not conform to the ISO specifications (e.g. “p1-P1” uses a number
which is not acceptable in these specifications). Using this approach you
can be sure that if it doesn’t conform to the specification then the code
will never be used by anyone else.

Many of the pseudo culture’s values are easy to invent:-
builder.CultureEnglishName =
 "PseudoLanguage (PseudoRegion)";
builder.CultureNativeName =
 "[!!! ΡšĕǔđŏĽäŉğǔäğĕ (ΡšĕǔđŏŘĕğĭŏŉ) !!!]";
builder.ThreeLetterISOLanguageName = "psd";
builder.ThreeLetterWindowsLanguageName = "psd";
builder.TwoLetterISOLanguageName = "pd";

builder.RegionEnglishName = "PseudoRegion";
builder.RegionNativeName =
 "[!!! ΡšĕǔđŏŘĕğĭŏŉ !!!]";
builder.ThreeLetterISORegionName = "PSD";

builder.ThreeLetterWindowsRegionName = "PSD";
builder.TwoLetterISORegionName = "PD";

builder.IetfLanguageTag = "pd-PD";

However, you need to find the right balance between being
sufficiently different from English to be clear that the application is not
using the default culture yet sufficiently understandable that the
application is still usable. Consider the following two currency strings
which were converted to a string using
123456789.123456.ToString("C"):-

$123,456,789.12
1'2'3'4'5'6'7'8'9@1235 ~

The first uses the “en-US” culture and the second uses the “pd-PD”
culture. The second clearly shows that the application is globalized but is
it still recognizable as currency? The decimal separator is “@” instead of
“.”; the group separator is “'” instead of “,”; the group size is 1 instead of
3; the number of decimals is 4 instead of 2; the currency symbol is “~”
instead of “$” and the currency symbol is placed to the right instead of to
the left. In terms of testing globalization this scores a 10 but is the
application still usable?

I have also taken the attitude that the day and month names used in
the DateTimeFormatInfo should not be ‘pseudo-ized’. For example:-

dateTimeFormatInfo.DayNames = new string[] {
 "*Sunday*", "*Monday*", "*Tuesday*",
 "*Wednesday*", "*Thursday*", "*Friday*",
 "*Saturday*" };

(The names are delimited with asterisks, however). You might have
expected the names to have been pseudo-ized like this:-

dateTimeFormatInfo.DayNames = new string[] {
 "ŠǔŉđäЎ", "MŏŉđäЎ", "ŤǔĕšđäЎ",
 "ŴĕđŉĕšđäЎ", "ŤħǔřšđäЎ", "FřĭđäЎ",
 "ŠäťǔřđäЎ" };

The reason behind this is that I want to be able to see clearly that day
and month names are taken from the appropriate DateTimeFormatInfo
object instead of from a resource assembly. In other words if the user is
presented with "ŠǔŉđäЎ" you can be sure that the application has been
localized but not how it has been localized. The text could have come
just as easily from a call to ResourceManager.GetString("Sunday") and

there is no way to make this distinction visually if the text in the
DateTimeFormatInfo is the same as a pseudo-ized resource.

With the pseudo translation culture in place you might like to update
the PseudoTranslation class introduced in Chapter 9, Machine
Translation to use the new culture instead of the previously hijacked
culture:-

public class PseudoTranslation
{
 private static CultureInfo cultureInfo =
 new CultureInfo("pd-PD");
 public static CultureInfo CultureInfo
 {
 get {return cultureInfo;}
 set {cultureInfo = value;}
 }
}

CultureSample And CultureBuilderSample
One of the sample applications in the .NET Framework 2.0 SDK is

called CultureSample (currently downloadable from
http://msdn.microsoft.com/netframework/downloads/updates/fw20sampl
esreadme.aspx) and is aimed squarely at creating custom cultures. Open
either the CultureSampleCS.sln or CultureSampleVB.sln Windows
Forms application, build it and you will get CultureBuilderSample.exe, a
UI for building new custom cultures (see Figure 11.4).

Figure 11.4 CultureBuilderSample Application For Building Custom

Cultures
Click “New Culture” and after entering the culture’s name the

culture’s formatting options can be specified using a dialog (see Figure
11.5) which is modeled on the Regional And Language Options’
Customize dialog.

Figure 11.5 CultureBuilderSample Application For Building Custom

Cultures
Click OK and your custom culture will be saved.

CultureBuilderSample can also be used to combine cultures and to create
replacement cultures.

Combining Cultures
One of the common reasons for wanting to create a custom culture is

to create a combination of language and region where the language and
the region are known but have not yet been paired together. The benefit
of creating such a combined culture is that you can refer to a language
and region which is important to your target market but which is not
defined in the .NET Framework or operating system. Table 11.1 shows
some example combinations with “es-US” (Spanish (United States))
being one of the most requested. The
CultureAndRegionInfoBuilderHelper class (included with the source
code for this book) performs the drudgery of combining two cultures
together and can be used like this:-

CultureAndRegionInfoBuilder builder =
 CultureAndRegionInfoBuilderHelper.
 CreateCultureAndRegionInfoBuilder(
 new CultureInfo("es-ES"),
 new RegionInfo("en-US"));

builder.Register();

The
CultureAndRegionInfoBuilderHelper.CreateCultureAndRegionInfoBuild
er method creates a new CultureAndRegionInfoBuilder from a
“language” CultureInfo (“es-ES”) and a “region” RegionInfo (“en-US”).
The new object is then used either to Register the culture or to Save the
culture. The CreateCultureAndRegionInfoBuilder has various overloads
to accept variations on the same theme.

The process of ‘splicing’ two cultures together is not as straight
forward as you might think. Table 11.6 shows the

CultureAndRegionInfoBuilder properties and the source of their values
and their actual values using the Spanish (United States) example.
CultureAndRegionInfoBuilde
r Property

Source es-US Value

AvailableCalendars US CultureInfo.OptionalCalendars

CompareInfo Spanish CultureInfo.CompareInfo

ConsoleFallbackUICulture Spanish
CultureInfo.GetConsoleFallbackUICulture
()

CultureEnglishName Spanish Neutral CultureInfo.EnglishName,
US RegionInfo.EnglishName

“Spanish
(United
States)”

CultureName Spanish
CultureInfo.TwoLetterISOLanguageName
, US
RegionInfo.TowLetterISORegionName

“es-US”

CultureNativeName Spanish Neutral CultureInfo.NativeName,
US RegionInfo.DisplayName (in Spanish)

“español
(Estados
Unidos)”

CultureTypes N/A (ReadOnly) N/A
(ReadOnly)

CurrencyEnglishName US RegionInfo.CurrencyEnglishName “US Dollar”

CurrencyNativeName US RegionInfo.CurrencyDisplayName (in
Spanish)

“US Dollar”

GeoId US RegionInfo.GeoId 244 (US)

GregorianDateTimeFormat US CultureInfo.DateTimeFormat US
DateTimeForm
at (with
Spanish
names)

IetfLanguageTag Spanish
CultureInfo.TwoLetterISOLanguageName
, US
RegionInfo.TowLetterISORegionName

“es-US”

IsMetric US RegionInfo.IsMetric false

ISOCurrencySymbol US RegionInfo.ISOCurrencySymbol “USD”

IsRightToLeft Spanish
CultureInfo.TextInfo.IsRightToLeft

false

KeyboardLayoutId Spanish Neutral
CultureInfo.KeyboardLayoutId

1034

LCID N/A (ReadOnly) 0x1000 (4096)

NumberFormat US CultureInfo.NumberFormat US
CultureInfo.Nu
mberFormat

Parent Spanish Neutral CultureInfo “es”

RegionEnglishName US RegionInfo.EnglishName “United States”

RegionName N/A (ReadOnly) N/A
(ReadOnly)

RegionNativeName US RegionInfo.DisplayName (in Spanish) “Estados
Unidos”

TextInfo Spanish Neutral CultureInfo.TextInfo Spanish
Neutral
CultureInfo.Te
xtInfo

ThreeLetterISOLanguageName Spanish
CultureInfo.ThreeLetterISOLanguageNam
e

“spa”

ThreeLetterISORegionName US
RegionInfo.ThreeLetterISORegionName

“USA”

ThreeLetterWindowsLanguage
Name

Spanish
CultureInfo.ThreeLetterWindowsLanguag
eName

“ESN”

ThreeLetterWindowsRegionNa
me

US
RegionInfo.ThreeLetterWindowsRegionN
ame

“USA”

TwoLetterISOLanguageName Spanish
CultureInfo.TwoLetterISOLanguageName

“es”

TwoLetterISORegionName US
RegionInfo.TwoLetterISORegionName

“US”

Table 11.6 CultureAndRegionInfoBuilder Properties And Values
For The Spanish (United States) Culture

The new culture is a combination of the language and the region but
many of the names used in the culture need to be localized. So whereas
the new culture uses the calendar for the region the names of the days
and months of that calendar must be in the specified language (i.e.
Spanish) and not the language from which the calendar has come (i.e.
English). The LoadDataFromRegionInfo method is very helpful in this
scenario but the LoadDataFromCultureInfo is less so. The
CultureAndRegionInfoBuilderHelper.CreateCultureAndRegionInfoBuild
er method is:-

public static CultureAndRegionInfoBuilder
 CreateCultureAndRegionInfoBuilder(
 CultureInfo languageCultureInfo,
 RegionInfo regionInfo,
 string cultureName)
{
 if (cultureName == null ||
 cultureName == String.Empty)
 cultureName =
 languageCultureInfo.
 TwoLetterISOLanguageName + "-" +
 regionInfo.TwoLetterISORegionName;

 CultureInfo languageNeutralCultureInfo =
 GetNeutralCulture(languageCultureInfo);

 CultureInfo regionCultureInfo =
 new CultureInfo(regionInfo.Name);

 CultureAndRegionInfoBuilder builder =
 new CultureAndRegionInfoBuilder(
 cultureName,
 CultureAndRegionModifiers.None);

 builder.LoadDataFromCultureInfo(
 regionCultureInfo);
 builder.LoadDataFromRegionInfo(regionInfo);

 builder.Parent = languageNeutralCultureInfo;

 builder.CompareInfo =
 languageCultureInfo.CompareInfo;
 builder.TextInfo =
 languageCultureInfo.TextInfo;

 builder.IetfLanguageTag = cultureName;

 builder.RegionNativeName = GetNativeRegionName(
 regionInfo, languageCultureInfo);

 builder.CultureEnglishName =
 languageNeutralCultureInfo.EnglishName +
 regionInfo.EnglishName + ")";

 builder.CultureNativeName =
 languageNeutralCultureInfo.NativeName +
 builder.RegionNativeName + ")";

 builder.CurrencyNativeName =
 GetNativeCurrencyName(
 regionInfo, languageCultureInfo);

 // copy the native month and day names
 DateTimeFormatInfo builderDtfi =
 builder.GregorianDateTimeFormat;

 DateTimeFormatInfo languageDtfi =
 languageCultureInfo.DateTimeFormat;

 builderDtfi.AbbreviatedDayNames =
 languageDtfi.AbbreviatedDayNames;

 builderDtfi.AbbreviatedMonthGenitiveNames =
 languageDtfi.AbbreviatedMonthGenitiveNames;

 builderDtfi.AbbreviatedMonthNames =
 languageDtfi.AbbreviatedMonthNames;

 builderDtfi.DayNames = languageDtfi.DayNames;

 builderDtfi.MonthGenitiveNames =
 languageDtfi.MonthGenitiveNames;

 builderDtfi.MonthNames =

 languageDtfi.MonthNames;

 builderDtfi.ShortestDayNames =
 languageDtfi.ShortestDayNames;

 builder.KeyboardLayoutId =
 languageNeutralCultureInfo.
 KeyboardLayoutId;

 builder.ThreeLetterISOLanguageName =
 languageNeutralCultureInfo.
 ThreeLetterISOLanguageName;

 builder.ThreeLetterWindowsLanguageName =
 languageNeutralCultureInfo.
 ThreeLetterWindowsLanguageName;

 builder.TwoLetterISOLanguageName =
 languageNeutralCultureInfo.
 TwoLetterISOLanguageName;

 return builder;
}

Two methods, GetNativeRegionName and GetNativeCurrencyName,
make an attempt to get the native versions of the region name and
currency name respectively. They both work by changing the
CurrentCulture to the language for which a native name is required (i.e.
Spanish) and then getting the property. If the appropriate .NET
Framework Language Pack is installed then the correct native name will
be returned otherwise the native name will be the English name and you
will need to manually update these values before registering or saving
the culture. The GetNativeCurrencyName method is shown below (the
GetNativeRegionName is identical except for the name of the property
and that it attempts to get the region’s DisplayName (because
DisplayName is localized)).

protected static string GetNativeCurrencyName(
 RegionInfo regionInfo,

 CultureInfo languageCultureInfo)
{
 string nativeName;
 CultureInfo oldCultureInfo =
 Thread.CurrentThread.CurrentUICulture;
 try
 {
 Thread.CurrentThread.CurrentUICulture =
 languageCultureInfo;

 nativeName = regionInfo.CurrencyNativeName;
 }
 catch (Exception)
 {
 nativeName = regionInfo.CurrencyNativeName;
 }
 finally
 {
 Thread.CurrentThread.CurrentUICulture =
 oldCultureInfo;
 }
 return nativeName;
}

Exporting Operating System-Specific
Cultures

Another use for custom cultures is to level the playing field of
supported cultures across operating systems. Recall that the list of
available cultures in the .NET Framework 2.0 is determined by the
operating system upon which the code is running. So Windows XP
Professional Service Pack 2, for example, has many more cultures
available to it than Windows 2000 Professional. If your application needs
to use a culture which is only available to a more recent version of
Windows then your first thought might be to upgrade your clients to that
version of Windows. A simpler solution, however, would be to export

the required culture from the version of Windows which has the culture
to the machines which do not have the culture. So you could export the
Welsh (United Kingdom) culture from Windows XP Professional
Service Pack 2 to, say, Windows 2000 Professional (where this culture is
not known). This approach becomes especially useful when newer
versions of Windows are released and we covet their new cultures but
don’t want to upgrade our development machines.

This process is wrapped up in the
CultureAndRegionInfoBuilderHelper.Export method which can be called
like this:-

CultureAndRegionInfoBuilderHelper.Export(
 new CultureInfo("cy-GB"),
 "cy-GB.xml", "en-GB", "en-GB");

The static Export method accepts four parameters: the CultureInfo to
export, the filename to export the definition to, the text info culture that
the exported culture should use and the sort culture that the exported
culture should use. The export method starts with some easily
recognizable code which simply creates a new
CultureAndRegionInfoBuilder object and loads its values from the
existing culture:-

RegionInfo regionInfo =
 new RegionInfo(cultureInfo.Name);

CultureAndRegionInfoBuilder builder = new
 CultureAndRegionInfoBuilder(cultureInfo.Name,
 CultureAndRegionModifiers.Replacement);

builder.LoadDataFromCultureInfo(cultureInfo);
builder.LoadDataFromRegionInfo(regionInfo);

builder.Save(ldmlFilename);

Notice that the exported culture appears at first to be a replacement
culture but this is only a ruse in order to allow the culture to be saved on
the machine which already has the culture. The exported culture file (e.g.
cy-GB.xml) cannot be used immediately on the target machine, however.
There is an issue which needs to be addressed first. If you open the
exported LDML file you will find two lines which will prevent the
custom culture from being created on the target machine:-

<msLocale:textInfoName type="cy-GB" />
<msLocale:sortName type="cy-GB" />

These lines define the text info and sort orders respectively. The
problem with these lines is that they refer to text info and sort definitions
which the target machine does not have. These lines have to be changed
to a text info and sort order which the target machine does have. The
remainder of the Export method does just this and the result is that these
lines are changed to:-

<msLocale:textInfoName type="en-GB" />
<msLocale:sortName type="en-GB" />

Of course, this means that the text info and sort orders of these
exported custom cultures will not be entirely correct but it is not possible
to define new text infos and sort orders for custom cultures so this is a
limitation that we have to live with.

Company-Specific Dialects
As mentioned in “Uses For Custom Cultures” at the beginning of this

chapter it can be useful to be able to create a set of resources which use a
vocabulary which is specific to a single company or group of companies.
The CreateChildCultureAndRegionInfoBuilder method does just this and
can be used like this:-

CultureAndRegionInfoBuilder builder =
 CultureAndRegionInfoBuilderHelper.
 CreateChildCultureAndRegionInfoBuilder(
 new CultureInfo("en-US"),
 "en-US-Sirius",
 "English (United States) " +
 "(Sirius Cybernetics Corporation)",
 "English (United States) " +
 "(Sirius Cybernetics Corporation)",
 "United States " +
 "(Sirius Cybernetics Corporation)",
 "United States " +
 "(Sirius Cybernetics Corporation)");

builder.Register();

The method accepts a culture (e.g. “en-US”) to inherit from and
accepts the new culture name and various strings to set various name
properties to. It returns a CultureAndRegionInfoBuilder object which can
be used to register the culture. The
CreateChildCultureAndRegionInfoBuilder method is:-

public static CultureAndRegionInfoBuilder
 CreateChildCultureAndRegionInfoBuilder(
 CultureInfo parentCultureInfo,
 string cultureName,
 string cultureEnglishName,
 string cultureNativeName,
 string regionEnglishName,
 string regionNativeName)
{
 RegionInfo parentRegionInfo =
 new RegionInfo(parentCultureInfo.Name);

 CultureAndRegionInfoBuilder builder = new

CultureAndRegionInfoBuilder(cultureName,
 CultureAndRegionModifiers.None);

 builder.LoadDataFromCultureInfo(
 parentCultureInfo);
 builder.LoadDataFromRegionInfo(
 parentRegionInfo);
 builder.Parent = parentCultureInfo;
 builder.CultureEnglishName =
 cultureEnglishName;
 builder.CultureNativeName = cultureNativeName;
 builder.RegionEnglishName = regionEnglishName;
 builder.RegionNativeName = regionNativeName;

 return builder;
}

Extending The CultureAndRegionInfoBuilder
Class

In the “Extending The CultureInfo Class” section of Chapter 6,
Globalization I showed a CultureInfoEx class which extended the .NET
Framework’s CultureInfo class. This CultureInfoEx could be used to
hold additional information about a culture and the example given added
postal code format information which could be used as a mask for data
entry. If you like the idea of custom cultures and you also like the idea of
extending the CultureInfo class then the natural extension is to put both
together and have extended custom cultures. Unfortunately the custom
culture architecture is a closed architecture and this scenario is not
supported. There are a number of barriers preventing the custom culture
architecture from being extended:-

CultureAndRegionInfoBuilder is sealed and therefore cannot be
inherited from

The CultureXmlReader and CultureXmlWriter classes which
read and write LDML files are both internal and sealed
and therefore cannot be inherited from and cannot even
be accessed

The NLP file format is binary and proprietary

To work around these limitations you would need to implement a
layer on top of the custom culture architecture. The essential idea would
be to create a CultureAndRegionInfoBuilderEx class which encapsulates
the CultureAndRegionInfoBuilder class. The new class would be a
duplicate of the CultureAndRegionInfoBuilder class and would redirect
all properties and methods from the ‘fake’
CultureAndRegionInfoBuilderEx class to the
CultureAndRegionInfoBuilder class. The Register method would save
the additional CultureInfoEx information to an additional file in the
Windows Globalization folder (e.g. “tr-TR.xml”). The Unregister method
would delete/rename the additional file. The Save method would write
the additional information to the LDML file and the CreateFromLdml
method would load the additional information from the LDML file.
Finally, the CultureInfoEx constructor would check to see if the culture
was a custom culture and, if so, load the additional information from the
associated additional information file.

Custom Cultures And .NET Framework
Language Packs

The .NET Framework draws the resources it needs from both the
operating system and the framework’s resources. In particular resources
such as exception messages, the PrintPreviewDialog,
CultureInfo.DisplayName, RegionInfo.DisplayName are all drawn from
the .NET Framework Language Pack which matches the
CultureInfo.CurrentUICulture. Of course, for supplementary custom
cultures no such language pack exists so the resources will fallback to
English. There is very little you can do about this. Whereas it is
technically possible to create your own .NET Framework Language Pack
for your own language there is no value in doing so because you cannot
sign the assembly with the same key used to sign the .NET Framework
assemblies. If your custom .NET Framework Language Pack does not
use the same key then ResourceManager will not match your language
pack satellite assemblies with the fallback assemblies in the .NET
Framework. Consequently any such custom .NET Framework Language
Pack would be ignored.

This has a knock on effect if you use ClickOnce to deploy your
Windows Forms applications because the majority of the ClickOnce
interface is drawn from the .NET Framework Language Packs (see the
ClickOnce section in Chapter 4, Windows Forms Specifics). As you
cannot create your own .NET Framework Language Packs you will not
be able to provide a ClickOnce user interface in your custom culture’s
language (with the exception of the ClickOnce bootstrapper dialogs).

Custom Cultures In The .NET Framework
1.1 And Visual Studio 2003

The story for custom cultures in the .NET Framework 1.1 is
considerably more limited than for the .NET Framework 2.0 to the extent
that if you are able to upgrade to the .NET Framework 2.0 I would advise
doing so. Assuming that this isn’t possible read on.

A custom culture in the .NET Framework 1.1 is a new class which
inherits from the CultureInfo class and sets the necessary CultureInfo
properties to their relevant values in the constructor. The .NET
Framework SDK includes an example of such a custom culture in

<SDK>\v1.1\Samples\Technologies\Localization\CustomCulture. To use
the new custom culture you have to construct it using its own constructor
so if your custom culture class is called BengaliBangladeshCulture then
you construct it using:-

CultureInfo cultureInfo =
 new BengaliBangladeshCulture();

It is not possible to construct it using the culture’s name (e.g. “bn-
BD”) because the list of cultures supported by the .NET Framework 1.1
is hard wired. Similarly Visual Studio 2003 and WinRes 1.1 use the list
supplied by the .NET Framework and therefore it is not possible to make
them aware of the custom culture and therefore both tools are useless for
maintaining resources for the custom culture.

Where Are We?
Custom cultures in the .NET Framework represent a great leap

forward and open new and exciting possibilities to developers. The new
cultures are recognized by the .NET Framework as a first class citizen
and, once registered, are as valid as any other culture. With this feature
we can replace existing cultures, create new cultures for previously
unknown cultures or cultures which are only recognized on certain
operating systems, make new language/region combinations and support
customer-specific dialects. The custom culture implementation is not
without its limitations and care should be taken to avoid custom culture
hell, effort is required to extend the custom culture architecture and, not
unreasonably, there is no support for language packs for custom cultures.
That said, the only remaining limitation is our imagination.

Microsoft .NET Development Series

John Montgomery, Series Advisor
Don Box, Series Advisor
Martin Heller, Series Editor

The Microsoft .NET Development Series is supported and developed by the leaders and experts of
Microsoft development technologies including Microsoft architects and DevelopMentor instructors. The
books in this series provide a core resource of information and understanding every developer needs in order
to write effective applications and managed code. Learn from the leaders how to maximize your use of the
.NET Framework and its programming languages.

Titles in the Series

For more information go to www.awprofessional.com/msdotnetseries/

Brad Abrams, .NET Framework Standard Library
Annotated Reference Volume 1: Base Class Library and
Extended Numerics Library, 0-321-15489-4

Brad Abrams and Tamara Abrams, .NET Framework
Standard Library Annotated Reference, Volume 2:
Networking Library, Reflection Library, and XML
Library, 0-321-19445-4

Keith Ballinger, .NET Web Services: Architecture and
Implementation, 0-321-11359-4

Bob Beauchemin, Niels Berglund, Dan Sullivan,
A First Look at SQL Server 2005 for Developers,
0-321-18059-3

Don Box with Chris Sells, Essential .NET, Volume 1:
The Common Language Runtime, 0-201-73411-7

Keith Brown, The .NET Developer's Guide to Windows
Security, 0-321-22835-9

Eric Carter and Eric Lippert, Visual Studio Tools for
Office: Using C# with Excel, Word, Outlook, and
InfoPath, 0-321-33488-4

Mahesh Chand, Graphics Programming with GDI+,
0-321-16077-0

Krzysztof Cwalina and Brad Abrams, Framework
Design Guidelines: Conventions, Idioms, and Patterns
for Reusable .NET Libraries, 0-321-24675-6

Anders Hejlsberg, Scott Wiltamuth, Peter Golde,
The C# Programming Language, 0-321-15491-6

Alex Homer, Dave Sussman, Mark Fussell,
ADO.NET and System.Xml v. 2.0—The Beta Version,
0-321-24712-4

Alex Homer, Dave Sussman, Rob Howard,
ASP.NET v. 2.0—The Beta Version, 0-321-25727-8

James S. Miller and Susann Ragsdale, The Common
Language Infrastructure Annotated Standard,
0-321-15493-2

Christian Nagel, Enterprise Services with the .NET
Framework: Developing Distributed Business Solutions
with .NET Enterprise Services, 0-321-24673-X

Fritz Onion, Essential ASP.NET with Examples in C#,
0-201-76040-1

Fritz Onion, Essential ASP.NET with Examples in
Visual Basic .NET, 0-201-76039-8

Ted Pattison and Dr. Joe Hummel, Building
Applications and Components with Visual Basic .NET,
0-201-73495-8

Dr. Neil Roodyn, eXtreme .NET: Introducing eXtreme
Programming Techniques to .NET Developers,
0-321-30363-6

Chris Sells, Windows Forms Programming in C#,
0-321-11620-8

Chris Sells and Justin Gehtland, Windows Forms
Programming in Visual Basic .NET, 0-321-12519-3

Paul Vick, The Visual Basic .NET Programming
Language, 0-321-16951-4

Damien Watkins, Mark Hammond, Brad Abrams,
Programming in the .NET Environment, 0-201-77018-0

Shawn Wildermuth, Pragmatic ADO.NET: Data
Access for the Internet World, 0-201-74568-2

Paul Yao and David Durant, .NET Compact Framework
Programming with C#, 0-321-17403-8

Paul Yao and David Durant, .NET Compact
Framework Programming with Visual Basic .NET,
0-321-17404-6

MS_NET_SP_7x9_25.qxd 8/16/05 1:53 PM Page 1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

